

 Page 1 of 18

Software Engineering
Semester Project

Team Dory

Monmouth University
Software Engineering 104

Courtney A. Locke

Summer 2013

 Page 2 of 18

Table of Contents

Problem Statement .. 3
Introduction and Overview .. 3
Process Model ... 4
System/Software Requirements ... 5
Software Design ... 9
Test Specification ... 13
Conclusions ... 17

 Page 3 of 18

Scribbler S2 Project

Problem Statement

In this project, we will demonstrate how a robot can come off cute, or uncute, to a

person, based off movement and sounds alone.

Introduction and Overview

This project was developed in reaction to a previous project, shown in an exhibit from

New York City’s Museum of Modern Art, named the Tweenbot project. This project had made
use of small robots, which were placed in various locations in NYC. The missions of the robots
were to make it from their placed location, to the MOMA. During the various robots journeys,
they would become “stuck”, although they still made it to the MOMA due to the fact that
people would help them by placing them in the right direction of the MOMA. This led to the
conclusion that people are so helpful even to the extent of aiding a robot on its journey.

This is where the Scribble S2 Project comes in. We hypothesized that the real reason

people helped these small robots, were due to the fact that they were cute, non-threatening,
and helpless-looking robots. We want to figure whether or not that hypothesis is true.

In order to test our theory, we will program a plain robot, specifically a Scribbler S2, in

two modes. One mode being programmed to be cute, and another mode to be programmed as
uncute. Then, the robots will be released into society to see how they react with the robots in
each mode. Our robots will also be able to react to bumping into an obstacle.

 Page 4 of 18

Process Model

For this project, I will be using

the Waterfall Process Model, but the
modified version. I chose this due to the
fact that I am giving a one time delivery
of our project into society, so it seemed
the best fit, but the modified version
instead of the strict waterfall model,
since there will be much back and forth
between coding and testing this project.

From start to end, this projects

process with need to include all of the
basic elements as seen in Figure 1.
Referring to the diagram below, one can
see what will be included in each stage of the model.

Stage What must be done/completed before going to next stage of model

System Engineering Deciding what requirements are needed in the production of this project

Analysis Analyzing what must be done in each mode to give off the desired cute or
uncute trait

Design Designing what will be included in each separate mode

Coding* Coding of both modes

Testing* Testing of both modes to ensure the cute and uncute emotion is clear

Maintenance Fix any final issues

*Due to the use of the modified waterfall model, project will spiral through these multiple times

As I progress through the Modified Waterfall Model, each step once complete, in

theory, should not be able to be gone back to. This would be though if I were using the Strict
Waterfall Process Model. In using the modified waterfall model, as I continue through the
process, I can go back if needed. This does not eliminate the need for conditions to go from one
stage to the next though.

 If the basic needs of the stage are not completed, one cannot continue onto the stage

and expect a great product. For instance, I cannot go onto the Analysis stage without gathering
all the requirements my project will need, due to the fact that it will cause problems later down
the line in my project. I cannot go onto the Design stage if I have not completed the Analysis
Stage, since the analysis stage gives me the information needed for design. I cannot go onto the
Coding stage without completing the design because I won’t know what I am supposed to code.
I cannot then go to the Testing stage because there will not be proper code to test, and finally, I
cannot go onto the Maintenance Stage because the full project is not completed therefore
Maintenance cannot really be done. Ensuring each stage is completed before moving on creates
an easy flow and momentum of the project.

Figure 1, Modified Waterfall Model.

 Page 5 of 18

System/Software Requirements

Use Cases

Use Case # Robot must act in either a cute or uncute way

Description User must be able to activate either a cute, or uncute mode of performance. This
is done by coordination of finger placement over the light sensor area of the
robot.

Actors User

Steps 1. Place robot on floor

2. Turn on robot

3. Using fingers, cover corresponding light sensor area

4. Observe human response to displayed mode

Use Case # Robot crossing a large black line on an otherwise white surface

Description The robot must be able to detect a thick black line on an otherwise white surface
using its sensors

Actors Robot

Steps 1. Place robot on floor

2. Turn on robot

3. Using fingers, cover corresponding light sensor area

4. Let robot “behave” in corresponding mode

5. Observe robot reaction when reacting to crossing a large black line on an
otherwise white surface

Use Case # Robot reacting to bumping into an obstacle

Description The robot must react to bumping into an object and react

Actors Robot

Steps 1. Place robot on floor

2. Turn on robot

3. Using fingers, cover corresponding light sensor area

4. Let robot “behave” in corresponding mode

5. Observe robot reaction when reacting to bumping into an object

 Page 6 of 18

Requirements Description

Req # 1 Category: Functional Use Case #: 1 Priority:

Description:
Robot must have a cute mode

Source:
Project Description

Criterion: Robot must be programed to have a mode giving off a “cute” appearance, being
limited to only its movements, lights, and sounds.

Dependencies: User must put in corresponding mode, Light
Sensors

Conflicts: Put in wrong mode

Req # 2 Category: Functional Use Case #: 1 Priority:

Description:
Robot must have an uncute mode

Source:
Project Description

Criterion: Robot must be programed to have a mode giving off an “uncute” appearance, being
limited to only its movements, lights, and sounds.

Dependencies: User must put in corresponding mode, Light
Sensors

Conflicts: Put in wrong mode

Req # 3 Category: Functional Use Case #: 2 Priority:

Description: Robot must be able to detect a thick black line
on an otherwise white surface

Source:
Project Description

Criterion: Robot must be able to detect a thick black line on an otherwise white surface, and
react.

Dependencies:
Line, Sensors

Conflicts:
Cannot see line with sensors

 Page 7 of 18

Req # 4 Category: Functional Use Case #: 2 Priority:

Description: Robot must be able to follow a thick black line
on an otherwise white surface

Source:
Project Description

Criterion: Robot must be able to follow a thick black line on an otherwise white surface, and if
loses the line, attempt to find it again and follow again

Dependencies:
Line, Sensors

Conflicts:
Cannot see line with sensors

Req # 5 Category: Functional Use Case #: 3 Priority:

Description: Robot must be able to move in multiple
directions

Source:
Project Description

Criterion: Robot must be able to move in a forward and backwards motion and rotate using two
wheels

Dependencies:
Wheels

Conflicts:
Getting stuck

Req # 6 Category: Functional Use Case #: 2,3 Priority:

Description: Robot must be able to utilize its sensors

Source:
Use case 2, 3

Criterion: Robot must be able to utilize its sensors to sense an obstacle, line

Dependencies:
Wheels, Lines, Obstacles

Conflicts:
No sensors working

Req # 7 Category: Functional Use Case #: 1 Priority:

Description:
Robot must utilize its lights

Source:
Requirement 1, 2

Criterion: Robot must utilize light feature to aid in giving cute or uncute effect

Dependencies:
Functioning lights, mode

Conflicts:
Non-functioning lights

 Page 8 of 18

Req # 8 Category: Functioning Use Case #: 1 Priority:

Description:
Robot must utilize sound feature

Source:
Requirement 1, 2

Criterion: Robot must utilize sound feature to aid in giving cute or uncute effect

Dependencies:
Functioning sound, mode

Conflicts:
Non-functioning sound system

Req # 9 Category: Functioning Use Case #: 1 Priority:

Description:
Robots movements must be streamline

Source:
Project Description

Criterion: Robots movements must be streamline and fluid as if one, in order to appear natural

Dependencies:
Wheels, Programmer

Conflicts:
Broken code, User

Req # 10 Category: Non-Functioning Use Case #: 1 Priority:

Description:
Robot must gain attention from humans

Source:
Project Description

Criterion: Robot must gain attention from humans in surrounding area in order to demonstrate
its cute or uncute mannerism

Dependencies:
Human crowd

Conflicts:
Absence of humans

 Page 9 of 18

Software Design

The Scribbler S2 robot will be programmed using a simple “drag and drop”

interface by each student individually. The program created will have two modes, and
two logical issues to compute. The two modes to be programmed are a cute, and uncute
mode. The logical issues are bumping into an object, and crossing a line.

To enter into each separate mode, the student will have to program the robot to

read a combination of light sensor coverings, corresponding with each program. Once
the robot has recognized which program it is in, the robot will then perform the
program. Within each mode, the robot will have to troubleshoot the interaction with an
obstacle and a line, each pre-programmed into each mode how to solve each issue.

Through the programming of the software, each requirement mentioned earlier

in the document will be fulfilled.

 Page 10 of 18

Data Flow Diagram

The diagram above is a visual representation of how information flows from the main processing
unit, through the entirety of the program.

Cute and
uncute
mode

Line

Sensor

Speaker

Object

Sensor

Light

Sensor

Stall
Sensor

Power

Line
Sensor

Stall
Sensor

Object
Sensor

Light
Sensor

Mode
Entered

Line
Detection

Object
Detection

Reaction
to Object

Reaction
to Line

Power

Speaker

 Page 11 of 18

State Transition Diagram

The diagram above visually explains the states the robot will be in during the duration of the
program.

Interpret User
Input

Cute Mode Uncute Mode

Interaction
with Line

Interaction
with Object

Problem State

Start

Cover Sensor Cover Sensor

Cross Line

Cross Line
Bump into

Object

Bump into
Object

On Line Stuck Off Line Free

 Page 12 of 18

Entity – Relationship Diagram

The diagram above visually explains the relationship between parts of the program.

User

Type of
Mode Load

Problem
Complete

Input

Interaction
with Line

Interaction
with Object

On Line Off Line

Stuck Free

 Page 13 of 18

Test Specification

Test Case # 1 Who does Testing: User

Description:
Robot must perform in cute/uncute mode determined by
light sensor reading

Setup:
Robot in hand or on surface and
turned on

Criterion: Robot must be able to read light sensor input correctly, and then follow programming
loop designated to specific input

Dependencies: User, Light Sensors

Expected Results: Robot performs correct mode
based on light sensor reading

Test Case # 2 Who does Testing: User

Description:
Robot must play introduction music corresponding to cute or
uncute mode

Setup:
Robot on surface

Criterion: Robot must be able to play music

Dependencies: Speaker

Expected Results: Robot plays correct introduction
music

Test Case # 3 Who does Testing: User

Description:
Robot detects and moves away from object on its left side

Setup:
Robot on surface with obstacle
in way on left side

Criterion: Robot must be able to use its sensors to avoid obstacles on its left side

Dependencies: Sensors, Obstacle, LEDs,
Speaker

Expected Results: Robot correctly avoids object,
while left most side LED illuminates green, and plays
a sound

Test Case # 4 Who does Testing: User

Description:
Robot detects and moves away from object on its right side

Setup:
Robot on surface with obstacle
in way on right side

Criterion: Robot must be able to use its sensors to avoid obstacles on its right side

Dependencies: Sensors, Obstacle, LEDs,
Speaker

Expected Results: Robot correctly avoids object,
while right most side LED illuminates green, and
plays a sound

 Page 14 of 18

Test Case # 5 Who does Testing: User

Description:
Robot detects and moves away from object directly in front

Setup:
Robot on surface with obstacle
directly in front

Criterion: Robot must be able to use its sensors to avoid obstacles directly in front of it

Dependencies: Sensors, Obstacle, LEDs,
Speaker

Expected Results: Robot correctly avoids object,
while all three LEDs illuminate green, and plays a
sound

Test Case # 6 Who does Testing: User

Description:
Robot detects and reacts to bumping into an obstacle

Setup:
Robot on surface

Criterion: Robot must be able to use its stall sensor to react to bumping into object

Dependencies: Sensors, Obstacle, LEDs,
Speaker

Expected Results: Robot correctly avoids object,
while middle LED illuminates green, and plays a
sound

Test Case # 7 Who does Testing: User

Description:
Robot detects black line on its right side

Setup:
Robot on surface and seeing
black line on its right

Criterion: Robot must be able to detect a black line on an otherwise white surface and react

Dependencies: Sensors, Black Line,
Speaker

Expected Results: Robot correctly turns toward line,
plays music

 Page 15 of 18

Test Case # 8 Who does Testing: User

Description:
Robot detects black line on its left side

Setup:
Robot on surface and seeing
black line on its left

Criterion: Robot must be able to detect a black line on an otherwise white surface and react

Dependencies: Sensors, Black Line,
Speaker

Expected Results: Robot correctly turns toward line,
plays music

Test Case # 9 Who does Testing: User

Description:
Robot detects that it is on a black line

Setup:
Robot on surface and seeing
black line

Criterion: Robot must be able to detect a black line on an otherwise white surface and react

Dependencies: Sensors, Black Line,
Speaker

Expected Results: Robot reacts, plays music

Test Case # 10 Who does Testing: User

Description:
Robot gives off a cute performance

Setup:
Robot on surface

Criterion: Robot must be able to give off a cute performance based solely on its movements and
sounds

Dependencies: Sensors, Motor, Speaker

Expected Results: Robot seems cute

Test Case # 11 Who does Testing: User

Description:
Robot gives off an uncute performance

Setup:
Robot on surface

Criterion: Robot must be able to give off an uncute performance based solely on its movements
and sounds

Dependencies: Sensors, Motor, Speaker

Expected Results: Robot seems uncute

 Page 16 of 18

Test Case # 12 Who does Testing: User

Description:
Robot must move forward when on white surface

Setup:
Robot on surface

Criterion: Robot must move in a forward motion when on a white surface without obstacles in
view

Dependencies: Sensors, Motor

Expected Results: Robot moves in straight line
forward

Test Case # 13 Who does Testing: User

Description:
Robot is lifted off floor and should react

Setup:
Robot in air

Criterion: Robot must react to being lifted up off the surface. Robot should continue as if on
black line

Dependencies: Sensors, Motor

Expected Results: Robot does the same as in Test
Case 9

 Page 17 of 18

Traceability Table

Requirement # Req. Description Source of Req
SW Module(s)
satisfying the

Req

Test Case(s)
testing the

requirement

1
Robot must have

a cute mode
Project

Description
Computation

Test if in cute
mode

2
Robot must have
an uncute mode

Project
Description

Computation
Test if in uncute

mode

3
Robot must be
able to detect a

line

Project
Description

Link
Test line

detection

4
Robot must be
able to follow a

line

Project
Description

Link
Test line

detection

 5

Robot must be
able to move in

multiple
directions

Project
Description

Link
Test for

movement

6
Robot must be

able to utilize its
sensors

Use case 2, 3 Controller
Test for working

sensors

7
Robot must be

able to utilize its
lights

Requirement 1, 2 Controller
Test if lights

working

8
Robot must be

able to utilize its
sound feature

Requirement 1, 2 Controller Test for sound

9

Robot
movements

must be
streamline

Project
Description

Controller
Test for

streamline
movement

10
Robot must gain
attention from

humans

Project
Description

Observe

Reactions from
each mode

 Page 18 of 18

Conclusions

 This project was very intriguing to me. Figuring out a way for a robot to come off cute or
uncute was a challenging, but enriching experience. I felt testing and retesting software is
extremely important to produce a high quality product, as well as to ensure that the robot came
off in the proper manner, dependent on sensors.

Determining what was cute and uncute was a challenge in itself. Focusing on my cute
mode, I wanted it to grab the viewer’s attention based off sounds and movements, as though to
be a performance. With the limited preinstalled sounds, I was forced to create my own sounds,
inputted from basic piano sheet music. I also made my robot react to the objects and lines in a
theatric way, such as rotating to music and moving different speeds. For my uncute mode, I
utilized not so cute sounds, such as a frog sound and basic robot noises, as well as the same
speed throughout all movements, in order to just make my robot seem “plain jane” and uncute
compared to my vibrant musical cute mode. Unfortunately, sounds played the biggest part in
giving off the modes sense of cute or uncute, although I attempted to show modes with
movements too.

I also learned that in order to create a streamline program with the drag and drop s2
software, the sequences of each if else would have to be minimal. For example, in my cute
mode, my robot would sometimes not react to an object, due to the fact that its previous action
takes five seconds to complete, and it ran into an object three seconds in. Using spin language
probably would have fixed this issue, but I unfortunately could not figure it out. Making the s2
program just very plain, meaning no cute or uncute attributes, made the program run extremely
streamline, but our project required us to have those attributes, so the streamlined movement
and accuracy was impacted a bit.

Through much trial and error, both in the programming of the S2 and the project report,

I learned what is necessary to develop a strong product, both on paper and in function.

